Understanding Coaxial Cable

Fundamental Coaxial Theory

Transmission of DC over a physical medium requires two conductors to complete the circuit - the 'go' wire, and the 'return' wire. In the context of radio frequency transmission, coaxial cable becomes a type of transmission line with the go wire taking the form of a centre conductor, and the return wire, known as the outer conductor, consists of an electrical shielding that surrounds the centre conductor. Because RF is a form of high frequency alternating current (alternating literally millions of cycles faster than typical electrical transmissions) their wave nature must be taken into account when designing cables. Unshielded open wire cables, such as those used in the electricity grid, are suitable transmission lines for applications in which the frequency is low enough that power is not lost through the generation of radio waves. When it comes to RF transmission unshielded cables will not only lose power through the generation of radio waves, but also have spurious transmissions induced upon the wire from nearby sources of electrical interference. The basic concept behind coaxial cables uses the return wire as a shielding mechanism, resulting in the electromagnetic field existing only between the inner and outer conductors.

Construction of a Coaxial Cable

From the perspective of the system designer, the most important question is, "what should I be looking for in a coaxial cable?". To answer such a question requires an understanding of the components that make up the cable, and how the mechanical construction of each component impacts electrical performance.

Centre Conductor

The centre conductor of a coaxial cable is used to transfer the AC signal and often comprises of either a solid copper wire or multiple strands of twisted copper wire. Multi-strand centre conductors are much more flexible than their solid copper counterparts, but incur significantly greater attenuation per metre of cable due to the Proximity Effect. The diameter, or more importantly, the surface area of the inner conductor is also critical in reducing Ohmic losses via the Skin Effect. While multi-strand conductors have a larger surface area than solid core cables, at the high carrier frequencies employed by UMTS and LTE communications the Proximity Effect causes greater losses than those of the Skin Effect - this principle is why you don't see Litz wires used for AC transmissions above about 1 MHz.

Construction is typically solid copper, often referred to as 'bare' copper, which offers the best electrical performance. However for larger cable types manufacturers often take advantage of the Skin Effect and provide a hollow centre conductor, or provide an aluminium core with a copper jacket (often referred to as CCA - Copper Clad Aluminium). This process makes a small trade-off in electrical performance for a significant reduction in cost.

Key Considerations:
  • Larger Diameter = Reduced Attenuation, Greater Power Handling, Reduced Flexibility
  • Stranded Conductor = Increased Flexibility, Increased Attenuation
  • Solid Copper = Greater Electrical Performance, Higher Cost, Heavier Mass

Dielectric Insulator

The dielectric insulator is used to separate the centre conductor from the outer conductor while at the same time minimising Ohmic losses arising from contact with the conductors. In order to minimise signal loss dielectrics often consist of aerated materials such as foamed polyethylene, PTFE, or in high power communications supporting structures such as spirals, rectangular boxes, and stars are used to approximate an air dielectric. The perfect dielectric insulator would comprise of an inert gas or vacuum. The dielectric must not only isolate the two conductors, but in order to achieve a constant impedance it must separate them at a specific distance.

Key Considerations:
  • Choose dielectric with lowest possible density
  • Halogen = Good electrical efficiency
  • Non-Halogen = Low smoke, low acidity, reduced electrical performance

Outer Conductor & Shielding

The outer conductor of a coaxial cable is kept at ground potential and provides electromagnetic shielding - isolating the inner electromagnetic signal from external interference and restricting signal power to the confines of the dielectric. Commonly the outer conductor takes the form of a metal wire braiding and while this affords greater flexibility, gaps between the wires result in RF leakage and interference. To circumvent this effect, high grade cables will often be dual shielded with a metal foil such as APA or Aluminium tape. Cable specifications will often give a percent braid coverage to give a comparative metric of the shielding effectiveness.

Key Considerations:
  • Required shield effectiveness
  • Flexibility
  • Ease of stripping & termination
  • Corrosion resistance
  • Mechanical strength

Outer Jacket

A coaxial cable's outer jacket does not have any electrical function, it's purpose is simply to provide environmental and mechanical protection. Common materials include PVC, FEP, TPFE, and PE. The selection of Additional chemicals may be added to provide UV stability, reduce smoke toxicity (such as LSZH - Low Smoke Zero Halogen types), or to protect against oil and water ingress to permit direct burial. 

The choice of outer jacket is made by the consideration of your application against the following mechanical characteristics:

  • Elongation - How much the cable will stretch before breaking
  • Weatherability - Ability to withstand abrasion, UV, chemicals, water, weather
  • Tensile strength - Force required to physically break or split the jacket
  • Temperature rating - Range cable can be operated without degradation
  • Flexibility - Ability of cable to bend, or minimum bend radius
  • Flammability - Resistance to combustion
  • Specific gravity - Density and weight
  • Thermoplastic vs Thermoset

Useful Definitions

A brief explanation of common coaxial cable terms.

Attenuation

Signal power loss measured in decibels per metre (dB/m). Attenuation comprises of all loss mechanisms, the most prominent of which are Ohmic losses in the conductor and dielectric. In coaxial cable the dielectric medium touches the centre conductor and absorbs some of its energy, hence the less dielectric making contact with the copper results in lower attenuation. In high power communication cables the dielectric insulator often comprises of air-gapped spacers or star/rectangle structures designed to minimise contact with the conductor.

Impedance

Characteristic impedance of a coaxial cable is determined by the spacing between the inner conductor and the outer conductor - or more specifically, the ratio of the outside diameter of the inner conductor to the inside diameter of the outer conductor. The main function of the dielectric insulator is to maintain this constant distance. Common impedances are 50 Ω, 75 Ω, and 95 Ω.

Capacitance

Capacitance is a property of a conductor in which permits the storage of electrical charge when a voltage or potential difference exists between two conductors. Since it takes a specific amount of time for a cable to reach its charged level, this interferes with the signal being transmitted. Digital signal modulation results in thousands of sudden changes in voltage in the form of square waves, however capacitance can result in skewing and appearing more like sawtooth waves. Capacitance is given in picofarads per metre (pF/m).

Velocity of Propagation

Often referred to as 'Velocity' or 'VF', velocity of propagation refers to the ratio of the speed of a wave through a physical medium against the speed of light in a vacuum. This metric is used to calculate propagation delay, and is often around 85% for high quality coaxial cables.