

3GPP Standards for the Internet-of-Things

Philippe Reininger Chairman of 3GPP RAN WG 3 (Huawei)

1010

•

 \bowtie

 \triangleleft

20

1

Partnership

- Regional standards organizations:
- ARIB (Japan),

• ETSI (Europe),

ATIS (USA),
CCSA (China),

- TTA (Korea),
 - TTC (Japan),
- TSDSI (India)

Market Representative Partners

- 16 Market partners representing the broader industry:
- 5G Americas,
- COAI (India),
- CTIA,
- GCF,
- GSA,
- GSMA,
- IPV6 Forum,

- MDG (formerly CDG),
- NGMN Alliance,
- Small Cell Forum,
- TCCA,
- TD Industry Alliance,
- TD-Forum

NEW:

- Wireless Broadband Alliance
- 5G Infrastructure Association
- Public Safety Communication Europe (PSCE) Forum

Smart Summit Singapore November 2016

The 3GPP Eco-system

3GPP Facts and Figures

1.200 specs per Release
 New Release every ~18 months

~400 Companies from 39 Countries 50.000 delegate days per year

40.000 documents per year

ຈ

ล

ຈ

38%

Participation by Region

Introduction & timeline

- In Release-13 3GPP has made a major effort to address the IoT market
- The portfolio of technologies that 3GPP operators can now use to address their different market requirements includes:
 - **1. eMTC** Further LTE enhancements for Machine Type Communications, building on the work started in Release-12 (UE Cat 0, new power saving mode: PSM)
 - **2. NB-IOT** New radio added to the LTE platform optimized for the low end of the market
 - **3. EC-GSM-IOT** EGPRS enhancements which in combination with PSM makes GSM/EDGE markets prepared for IoT
- The Release-13 is frozen and additional work is on-going for Release-14

Summary for eMTC, NB-IOT and EC-GSM-IoT

	eMTC (LTE Cat M1)	NB-IOT	EC-GSM-IoT
Deployment	In-band LTE	In-band & Guard-band LTE, standalone	In-band GSM
Coverage*	155.7 dB	164 dB for standalone, FFS others	164 dB, with 33dBm power class 154 dB, with 23dBm power class
Downlink	OFDMA, 15 KHz tone spacing, Turbo Code, 16 QAM, 1 Rx	OFDMA, 15 KHz tone spacing, 1 Rx	TDMA/FDMA, GMSK and 8PSK (optional), 1 Rx
Uplink	SC-FDMA, 15 KHz tone spacing Turbo code, 16 QAM	Single tone, 15 KHz and 3.75 KHz spacing SC-FDMA, 15 KHz tone spacing, Turbo code	TDMA/FDMA, GMSK and 8PSK (optional)
Bandwidth	1.08 MHz	180 KHz	200kHz per channel. Typical system bandwidth of 2.4MHz [smaller bandwidth down to 600 kHz being studied within Rel-13]
Peak rate (DL/UL)	1 Mbps for DL and UL	DL: ~50 kbps UL: ~50 for multi-tone, ~20 kbps for single tone	For DL and UL (using 4 timeslots): ~70 kbps (GMSK), ~240kbps (8PSK)
Duplexing	FD & HD (type B), FDD & TDD	HD (type B), FDD	HD, FDD
Power saving	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX, C-DRX	PSM, ext. I-DRX
Power class	23 dBm, 20 dBm	23 dBm, others TBD	33 dBm, 23 dBm

* In terms of MCL target. Targets for different technologies are based on somewhat different link budget assumptions (see TR 36.888/45.820 for more information).

eMTC

Objectives

- Long battery life: ~10 years of operation with 5 Watt Hour battery (depending on traffic and coverage needs)
- Low device cost: comparable to that of GPRS/GSM devices (as in the 3GPP work item description)
- Extended coverage: >155.7 dB maximum coupling loss (MCL)
- Variable rates: ~10 kbps to 1 Mbps depending on coverage needs

Deployment

- Can be deployed in any LTE spectrum
- Coexist with other LTE services within the same bandwidth
- Support FDD, TDD and half duplex (HD) modes
- Reuse existing LTE base stations with software update

Main PHY/RF features

- Narrowband operation with 1.08 MHz bandwidth
- Frequency hopping with narrowband retuning for frequency diversity
- TTI bundling/repetition to achieve large coverage enhancements
- New UE power class of 20 dBm
- Further cost reduction beyond Cat 0 (no wideband control channel, reduced TM support, reduced HARQ)

Rel-14: eMTC enhancements

Main feature enhancements

- Support for positioning (E-CID and OTDOA)
- Support for Multicast (SC-PTM)
- Mobility for inter-frequency measurements
- Higher data rates
 - Specify HARQ-ACK bundling in CE mode A in HD-FDD
 - Larger maximum TBS
 - Larger max. PDSCH/PUSCH channel bandwidth in connected mode at least in CE mode A in order to enhance support e.g. voice and audio streaming or other applications and scenarios
 - Up to 10 DL HARQ processes in CE mode A in FD-FDD
- Support for VoLTE (technics to reduce DL repetitions, new repetition factors, and adjusted scheduling delays)

NB-IOT

- Objectives
 - Even lower cost than eMTC
 - Extended coverage: 164 dB maximum coupling loss (at least for standalone)
 - Long battery life: 10 years with 5 Watt Hour battery (depending on traffic and coverage needs)
 - Support for massive number of devices: at least 50.000 per cell
- Main simplification
 - Reduced data rate/bandwidth, mobility support and further protocol optimizations
- NB-IOT supports 3 modes of operation:
 - **Stand-alone**: utilizing stand-alone carrier, e.g. spectrum currently used by GERAN systems as a replacement of one or more GSM carriers
 - **Guard band**: utilizing the unused resource blocks within a LTE carrier's guard-band
 - In-band: utilizing resource blocks within a normal LTE carrier

NB-IOT (cont'd)

Main PHY features

- Narrow band support of 180 kHz
- Supports two modes for uplink
 - Single tone with 15 kHz and/or 3.75 kHz tone spacing
 - Multiple tone transmissions with 15 kHz tone spacing
- No support of Turbo code for the downlink
- Single transmission mode of SFBC for PBCH, PDSCH, PDCCH
- New narrowband channels:
 - NPSS, NSSS, NPBCH, NPDCCH, NPDSCH, NPUSCH, NPRACH

Main radio protocol features

- Single HARQ process
- Only RLC AM mode with simplified status reporting
- Two PDCP options:
 - 1. SRB 0 and 1 only. No AS security (NAS security is used instead). PDCP operating in transparent mode.
 - 2. SRB 0, 1, 2 and one DRB. AS security, which is cached upon RRC connection release.
- For PDCP option 2, RRC connection suspend/resume procedures to maintain AS security context.
- Significantly reduced broadcast system information

Rel-14: NB-IOT enhancements

Agreement on NB-IOT positioning

- OTDOA is supported
 - Baseline signal(s) are: NB-IoT Rel-13 signals, LTE CRS/PRS in 1 PRB
- UTDOA positioning is supported under the following conditions:
 - It uses an existing NB-IoT transmission
 - It can be used by Rel-13 UEs
- Any signal used for positioning needs to have its accuracy, complexity, UE power consumption performance confirmed

Main feature enhancements

- Support for Multicast (SC-PTM)
- Power consumption and latency reduction (DL and UL for 2 HARQ processes and larger maximum TBS)
- Non-Anchor PRB enhancements (transmission of NPRACH/Paging on a non-anchor NB-IoT PRB)
- Mobility and service continuity enhancements (without the increasing of UE power consumption)
- New Power Class(es) (if appropriate, specify new UE power class(es) (e.g. 14dBm))

Extended C-DRX and I-DRX operation

- Connected Mode (C-eDRX):
 - Extended DRX cycles of 5.12s and 10.24s are supported

- Idle mode (I-eDRX):
 - Extended DRX cycles up to ~44min for eMTC
 - Extended DRX cycles up to ~3hr for NB-IOT

Main upper layer features for NB-IOT and eMTC

- UE and Network negotiate capabilities and preferences for types of NAS/core network optimizations
 - This may be used for core network selection
 - Changes in Attach procedure required
- There are two different data transfer optimization features agreed for NB-IOT and eMTC:
 - Mandatory for NB-IoT/Optional for eMTC: "CP optimization"
 - Enables Small data over NAS using encrypted NAS PDUs
 - Support for RoHC Header Compression for IP PDN connection
 - Architecture Change: MME, S-GW and P-GW may be combined in one entity (e.g. C-SGN)
 - Optional for NB-IoT and eMTC: "UP optimization"
 - User plane based with RAN context casheing in idle mode to enable connection suspend/resume procedures on radio/S1 interface
- Other optional new features
 - Support for non-IP data (2 flavours: non-IP PDN via P-GW, non-IP via SCEF)
 - Attach without PDN connectivity
 - SMS transfer without combined attach
 - Storing and usage of coverage level in MME to avoid unnecessary repetitions over the air

EC-GSM-IoT

Objectives

- Long battery life: ~10 years of operation with 5 Wh battery (depending on traffic pattern and coverage needs)
- Low device cost compared to GPRS/GSM devices
- Extended coverage:
 - 164 dB MCL for 33 dBm UE,
 - 154 dB MCL for 23 dBm UE
- Variable rates:
 - GMSK: ~350bps to 70kbps depending on coverage level
 - 8PSK: up to 240 kbps
- Support for massive number of devices: at least 50.000 per cell
- Improved security compared to GSM/EDGE

EC-GSM-IoT (cont'd)

Main PHY features

- New logical channels designed for extended coverage
 - Repetitions to provide necessary robustness to support up to 164 dB MCL
- Overlaid CDMA to increase cell capacity (used for EC-PDTCH and EC-PACCH)

Other features

- Extended DRX (up to ~52min)
- Optimized system information (i.e. no inter-RAT support)
- Relaxed idle mode behavior (e.g. reduced monitoring of neighbor cells)
- 2G security enhancements (integrity protection, mutual authentication, mandate stronger ciphering algorithms)
- NAS timer extensions to cater for very low data rate in extended coverage
- Storing and usage of coverage level in SGSN to avoid unnecessary repetitions over the air

The objective is to specify radio interface enhancements for EC-GSM-IoT, that allow

- use of alternative mappings of blind physical layer transmissions for higher coverage classes of EC-PDTCH/EC-PACCH
- MCL improvement targeting at least 3 dB for low power devices (i.e. 23 dBm) on all uplink channels
- Support for positioning

For more Information:

Search for WIDs at http://www.3gpp.org/ftp/Information/WORK_PLAN/ (See excel sheet)